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Abstract
Two new families of exact solutions of the wave equation uxx + uyy + uzz −
c−2utt = 0 generalizing Bessel–Gauss pulses and Bateman–Hillion relatively
undistorted progressive waves, respectively are presented. In each of these
families new simple solutions describing localized wave propagation are found.
The approach is based on a kind of separation of variables.
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1. Introduction

In recent years several simple exact solutions of the wave equation

� u = 0 where � ≡ ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 − c−2∂2/∂t2 (1)

c = const, that describe localized transmission of energy were derived, e.g., [1–6]. The most
strong localization yet found is described by the Gaussian-type dependence on some or on all
variables and is demonstrated by solutions belonging to two families.

The first family can be characterized in terms of relatively undistorted progressive wave
solutions [8], i.e. by

u = g(x, y, z, t)f (θ) (2)

where the waveform f (·) is an arbitrary function, and the amplitude g and the phase
θ = θ(x, y, z, t) are fixed functions. Bateman [9] presented such a solution with

θ = α + (x2 + y2)/β where α = z − ct β = z + ct and g = 1/β (3)
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which was of little immediate interest. A valuable idea by Hillion [10] was to complexify θ

and g by a constant shift in β,

β → β∗ β∗ = β − iε (4)

with a free parameter ε > 0. This allowed a variety of highly localized solutions of (1) by
means of clever specializing f (·). Examples are beam-like solutions known as focus wave
modes and exhibiting Gaussian-type localization near the z-axis [1, 2], and solutions with
finite energy having power-law [3] or exponential [6] localization in z and t. We call solutions
of (1) of the form (2)–(4) Bateman–Hillion waves.

The second family is represented by the Bessel–Gauss pulses introduced by Overfelt [5]
(see also an important paper [7]), which can be conveniently parametrized as follows:

u = 1

β∗
exp

(
ipθ +

iK2

4pβ∗

)
Jm

(
Kρ

β∗

)
e±imϕ (5)

with Jm(·) standing for the Bessel functions, m = 0, 1, . . . , p and K arbitrary constants,
ρ =

√
x2 + y2, x = ρ cos ϕ and

θ = α + ρ2/β∗ (6)

the complexifed Bateman phase. For p > 0 it is immediately seen that (5) are highly localized
in the vicinity of the z-axis, because exp(ipθ) exhibits Gaussian-type decay with ρ,

| exp (ipθ)| = exp [�(ipθ)] = exp [−pερ2/(β2 + ε2)] (7)

where �(·) stands for the real part, while other factors grow at most as exp [C(β)ρ] when
ρ → ∞. The localized character of some of the Bateman–Hillion waves with properly chosen
waveforms f (·) [1, 2, 3, 6] was also based on (7).

Approaches to the derivation of the above families were dissimilar.
In this letter we present a simple uniform approach to deriving two families of solutions of

(1) which generalize Bateman–Hillion wave and Bessel–Gauss pulse solutions, respectively.
The approach is based on a kind of separation of variables with a ‘modulation factor’ [11].

The well-known procedure of separation of variables in (1), see, e.g., [11], is based
on separating out the ‘modulation factor’ 	(z, t) = ei(ζ z−ωt) with constants ζ and ω, by
u = ei(ζ z−ωt)W(x, y), which gives the two-dimensional Helmholtz equation

Wxx + Wyy + k2W = 0 (8)

with k2 = ω2/c2 − ζ 2 = const. Properties of solutions of (8) are crucially different for the
cases of k = 0 and k �= 0.

In the following a new procedure of separation of variables in (1) is presented, in which
a two-dimensional Helmholtz equation with a specialized k = k(z, t) appears. In the cases of
k = 0 and k �= 0 we obtain two different families of solutions of (1). Bateman–Hillion waves
and their generalizations presented in [12–14] belong to the first family. The second family
generalizes Bessel–Gauss pulses (5). In each family we find new examples of highly localized
solutions.

2. Separation of variables and complexification

We seek solutions of (1) in the form

u = 	(α, β, ρ)W ρ =
√

x2 + y2 (9)

where α and β are characteristic variables (3) associated with wave propagation along the
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z-axis, 	 is an as yet unknown axisymmetric ‘modulation factor’ and W stands for an arbitrary
solution of the Helmhotz equation

Wxx + Wyy +
K2

β2
W = 0 (10)

with a free constant K. Thus W depends on x/β and y/β or alternatively on ρ/β and ϕ.
Inserting (9) into (1) yields

� u = 	�W + 2(∇	∇W − c−2	tWt) + W�	 = 0. (11)

Evidently, �W = Wxx + Wyy + 4Wαβ and 	�W = 	(Wxx + Wyy) = −K2	W/β2. Further,

∇	∇W − c−2	tWt = 	ρWρ + 2(	αWβ + 	βWα) = 	ρWρ + 2	αWβ.

Considering W as a function of s = ρ/β and ϕ, and noting that Wρ = Ws/β and
Wβ = −ρWs/β

2, we have

(∇	∇W − c−2	tWt) = (β	ρ − 2ρ	α)Ws/β
2.

We impose that β	ρ(α, β, ρ) − 2ρ	α(α, β, ρ) = 0 whence

	 = 	(θ, β) with θ = α + ρ2/β (12)

where θ is the Bateman phase (3). Now (11) reduces to the Klein–Gordon equation(
� − K2

β2

)
	 = 0. (13)

In a further calculation we employ the property of the Bateman phase [9] mentioned in
the introduction, namely that the expression

ψ(θ, β) = f (θ)/β (14)

satisfies the wave equation, �ψ = 0, for arbitrary f (·). We will seek the ‘modulation factor’
in the form

	(θ, β) = ψB(β) (15)

with unknown B(·). At this stage f (·) remains arbitrary. Inserting (15) into (13) and using
equations �ψ = 0 and �B(β) = 0, we obtain

(� − K2β2)	 = ψ � B + 2(∇ψ∇B − c−2ψtBt ) + B(� − K2/β2)ψ

= 2[ψρBρ + 2(ψαBβ + ψβBα)] − (K/β)2ψB = 4ψαBβ − (K/β)2ψB = 0.

(16)

In the case of K = 0, for arbitrary f (·) in (14), (16) can be satisfied by putting B(β) = 1.
(Another possibility is taking f (·) = const and B(·) arbitrary. Such solutions mentioned
earlier in [15] are of little interest in the context of Gaussian-type localization, and they will
not be discussed here.)

In case of K �= 0, we rewrite (16) as follows

(� − K2/β2)	 = f (θ)B ′(β)

β

[
4
f ′(θ)

f (θ)
− K2 B(β)

β2B ′(β)

]
= 0

with ′ standing for the derivative of a function of one variable with respect to its argument.
Observing that both items in square brackets must be constants, we can write f ′(θ)/f (θ) =
ip,p = const, whence

f (θ) = eipθ and B(β) = exp[iK2/(4pβ)]. (17)

Further we consider the case of p > 0.
We complexify the above solutions via the constant shift in β (4).
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3. The case of K = 0: generalized Bateman–Hillion waves

For K = 0, we obtained a family of solutions of (1) of the form

u = f (θ)

β∗
W(X, Y ) where X = x

β∗
Y = y

β∗
(18)

with arbitrary f (θ), θ given by (6), and W(X, Y ) an arbitrary solution of the Laplace equation

WXX + WYY = 0. (19)

Here g = W/β∗ can be interpreted as an amplitude factor for the Bateman–Hillion relatively
undistorted progressive wave solution. In the classical case [9, 10] W = 1. Particular cases of
(18) with W(X, Y ) = (X2 + Y 2)µ/2 e±iµϕ , with real µ, were presented in [12, 13]. However,
(19) allows other solutions, e.g.,

W = e±iqX±qY W = γ1 + γ2X + γ3Y W = �(X2 − Y 2) + MXY (20)

with q, γ1, γ2, γ3,� and M arbitrary complex constants. In each case, taking those f (θ)

which were introduced in [6] to describe wave packets exhibiting Gaussian-type localization
around a moving point, we obtain other solutions of (1), still highly localized.

4. The case of K �= 0: generalized Bessel–Gauss pulses

For any complex K �= 0 we come up with solutions of (1) of the form

u = 1

β∗
exp

(
ipθ +

iK2

4pβ∗

)
W(X, Y ) X = x

β∗
Y = y

β∗
(21)

where θ is described by (6) and W(X, Y ) is an arbitrary solution of the Helmholtz equation

WXX + WYY + K2W = 0. (22)

Bessel–Gauss pulses (5) are particular cases of (21). The referee has noted that changing K2

into −K2 in (21) would give the Bessel–Gauss pulses of the form (5) with the modified Bessel
functions Im(·).

Now we describe other solutions from the family (21). As easily seen

W =
∫ 2π

0
A(φ) exp

[
iK

√
X2 + Y 2 cos (φ − ϕ)

]
dφ (23)

with an arbitrary generalized function A(·), is a solution of (22). To obtain (5) we should put
A(φ) = e∓imφ−im π

2 (cos mφ)/(2π). A different example is A(φ) = δ(φ − φ0), where δ(·) is
the Dirac delta function, which implies W = exp {iK[X cos (ϕ − φ0) + Y sin (ϕ − φ0)]}.

We do not know whether solutions of (22) exist growing at infinity so fast that the estimate
|W(X, Y )| � exp {const ρ2/|β∗|}, ρ → ∞, const > 0, does not hold. As seen from (7), in the
case of such growth solutions of (1) of the form (21) would exist not localized in vicinity of
the z-axis.
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